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Abstract
With the growing integration of AI into daily life, various tech-
nologies have been developed to teach children about AI. However,
differences in their designs highlight the need for a thorough under-
standing of these tools to make the most of current technological re-
sources and guide the effective development of future learning tools.
Through a systematic search, we identified 64 different AI learning
tools for children and analyzed their design features, including
both static design features (i.e., presentation formats and learning
content) and interactive design features (i.e., learning activity types
and design features that potentially enhance the effectiveness of
the activities). Our findings reveal the current trends and gaps in
the design of children’s AI learning technologies. Based on these
insights, we reflect on future design opportunities and provide rec-
ommendations for creating new, effective learning technologies to
advance AI education for the next generations.
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1 Introduction
Artificial intelligence (AI) nowadays plays an active role in all life
aspects, from personalized music recommendations [8] and smart
vehicles [92] to medical decision-making [125] as well as prominent
Generative AI (GenAI) systems recently like ChatGPT and DALL-E.
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Recognizing AI’s growing significance, governments [114], indus-
tries [108], and academics [50] have urged teaching AI to the public,
especially young people, to prepare them for the AI-driven era. As
such, mainly in the last five years [66], numerous initiatives have
emerged to integrate AI into children’s education. Indeed, profi-
ciency in AI is now seen as a cornerstone of technological literacy,
allowing children to make informed decisions about AI use and en-
gage in discussions on its regulation and governance [17]. Besides,
AI education provides young people with the mindsets and skills
necessary for future job markets where collaboration with AI is
crucial for efficiency, innovation, and competence [133]. Moreover,
early exposure to AI can also ignite children’s curiosity and inter-
est in higher education and careers in technical fields, ultimately
fostering future technological advancements [137].

Acknowledging the value of early AI education, more and more
technologies have been designed to support children’s AI learning
experiences and outcomes, such as online platforms for developing
machine learning (ML) models [16, 62] and interfaces to visualize
AI workflows [64, 98]. Such technology-based tools1 make com-
plicated and abstract AI concepts more tangible, accessible, and
engaging than conventional courses. For example, interactive web-
based apps allow children to observe how neural networks process
and recognize sketches [64]. These tools also extend AI education
beyond traditional classrooms. For instance, Tseng and colleagues
[111] designed a tablet-based app to support children and parents in
collecting data and training AI models together at home, providing
learning opportunities and knowledge retention outside of formal
education settings. The positive results of these tools in improving
children’s AI learning outcomes [9] and experiences [79] suggest
that technologies have great potential for early AI education.

Despite the growing number of AI learning technologies for
children, noticeable disparities exist in their design. These tools
vary widely in presentation formats [7, 12], areas of AI learning
content [28, 61, 90], and learning activities [2, 5]. Although several
surveys have explored AI learning technologies for children, they
often focused on certain tool types (e.g., tools aimed at secondary
school students [77]), only analyzed specific design features (like
presentation formats and learning activities [126]), or covered AI
curriculum in their scope without dedicated tool design analysis
[66, 105, 106]. Some surveys even include tools not directly ad-
dressing AI concepts [58]. Furthermore, few studies have examined
these tools from a design perspective [11], an important perspective

1We used technology and tool interchangeably in this paper to improve lexical diversity.
While the term tool may include a wider scope (e.g., non-technology-based instru-
ments), we only focus on technology-based tools with electronic components (i.e.,
computer artifacts) in this study.

https://orcid.org/0009-0008-1806-3815
https://orcid.org/0000-0002-0869-0304
https://doi.org/10.1145/3706598.3713443
https://doi.org/10.1145/3706598.3713443
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3706598.3713443


CHI ’25, April 26–May 01, 2025, Yokohama, Japan Kaiyue Jia and Junnan Yu

required for informing the creation of new technologies that effec-
tively promote children’s AI education. This lack of comprehensive
understanding of current AI learning tools and their design can
lead to missed opportunities for fostering AI literacy among young
people, which is increasingly critical due to the growing prevalence
of AI applications (e.g., ChatGPT [3]) and their societal impacts.
AI literacy is essential not only for future computer scientists and
designers seeking technical expertise but also for all children to un-
derstand AI’s implications, navigate ethical dilemmas, and respond
to challenges involving harmful intentions [63]. Additionally, as AI
literacy nurtures transferable skills like critical thinking [104] and
collaborative problem-solving [119], failing to utilize existing tools
effectively may hinder children’s ability to address broader chal-
lenges. Moreover, without a thorough overview of AI learning tools,
educators and designers risk overlooking key design features that
characterize existing technologies and can serve as the reference
for designing new tools to cater to diverse learning needs. Hence, a
comprehensive survey of AI learning tool design is imperative to
empower learners, educators, and designers to fully utilize current
educational resources and facilitate the creation of more accessi-
ble and engaging tools that equip children with the competencies
necessary in the AI-centric future.

To bridge the gaps and promote children’s AI education, this
study seeks to address the research question:How are technologies
designed to support children’s AI learning? To answer this, we
systematically collected and examined 64 existing AI learning tools
for individuals aged 18 and below, drawing from research articles
and recommendations by AI-related academic communities (e.g.,
INSPIRE Engineering Gift Guides [35, 36]). We focus on examining
these tools’ design features, i.e., their elements or characteristics
that contribute to children’s AI learning experiences and outcomes.
Our analysis is structured around three design feature dimensions
identified from previous reviews of AI and STEM learning tools
(e.g., coding kits [130]), which typically comprise both static and
interactive features. Static design features—elements that remain
constant regardless of children’s interactions—encompass presenta-
tion format (how AI learning materials and activities are presented
to children [77, 99, 130]) and learning content (the topics that the tool
aims to teach [77, 99, 105]). Conversely, interactive design features,
which display or change only based on how children interact with
tools, concentrate on learning activity (types of activities the tool
engages users to learn about AI and design features enhancing such
activities by aligning with children’s effective learning patterns
[106, 116, 126]). This framework, which incorporates both static
and interactive design features, was employed because it effectively
captures the visual and activity elements of a learning kit, offering
a systematic analytical approach to better understand the design
of AI learning tools for children. We also examined these tools’
target age groups and the interconnections between the three de-
sign features and age groups to determine which content is taught
through which activities and formats for various ages. This holistic
approach aims to guide the selection, use, and creation of AI learn-
ing tools tailored to diverse educational demands for children. Our
findings show that current tools are designed to teach three sets of
content (AI awareness, mechanics, and impacts) through four types
of activities (conventional instruction, experiencing, modifying,

and creating) and two formats (virtual and hybrid tools), along-
side four groups of design features that may enhance children’s
active, engaged, meaningful, and socially interactive learning of
AI [41]. Based on these findings, we highlight the current gaps in
children’s AI learning tool design (e.g., underrepresented or missing
AI concepts) and reflect on future opportunities for designing more
effective AI learning technologies.

Our contributions are twofold. First, we present a systematic
overview of children’s AI learning tools endorsed by scholarly
communities, which serves as a valuable reference for educators
and parents to identify, evaluate, and select tools for children. A
list of analyzed tools and their design features are shown in Table 3
in the appendix. Second, we highlight the existing trends and gaps
in children’s AI learning tool design, providing inspiration and
guidance for creating effective tools to fuel early AI education
through technology design.

2 Related Work
We aim to survey existing technologies and examine how they are
designed to support children’s AI learning. Accordingly, this section
reviews the literature on the design of learning technologies, the
current state of children’s AI education, and existing surveys on
children’s AI learning tools.

2.1 Design of Technologies for Learning
Purposes

The global reach of the Internet and mobile devices has led to a
surge in hardware and software to support learning, i.e., learn-
ing technologies [40]. From massive open online courses [60] and
dynamic visualizations [86] to interactive educational games [81],
these technologies have revolutionized the educational landscape by
enhancing the interactivity of conventional instruction. For exam-
ple, mobile apps provide immediate, contingent feedback that is not
always available in traditional classrooms [76], which contributes
to more dynamic and engaging learning experiences. Besides, digi-
tal learning tools, such as online programming environments (e.g.,
Scratch), provide easy access to and retention of learning materi-
als regardless of physical location, thereby supporting educational
continuity beyond formal schooling.

To harness the vast potential of technologies, efforts from differ-
ent domains have been dedicated to guiding the design of technology-
based tools to promote effective learning. Among these efforts,
Hirsh-Pasek et al. [41] synthesized decades of research from learn-
ing sciences, an interdisciplinary field that merges insights from
psychology, cognitive sciences, and education to understand how
children learn most effectively. They then distilled four conceptual
principles—engaged, meaningful, and socially interactive learn-
ing—which are widely supported by well-established theories and
empirical evidence, and generated four sets of guidance for integrat-
ing these “four pillars of learning” into educational app design. The
pillar ofActive Learning highlights that the app should be designed
to foster children’s active exploration of new ideas by “minds-on
tasks” that require intellectual efforts (e.g., critical thinking and
problem-solving). This concept is rooted in the constructivist the-
ory [87], which posits that individuals construct knowledge of the
world through interactions with their surroundings and reflections
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on such experiences, viewing learning as an active process rather
than passive information reception. Engaged Learning empha-
sizes the need to maintain children’s attention to learning activities,
which could be achieved by providing materials at appropriate chal-
lenge levels and offering immediate feedback. This pillar can be
traced back to Fredrick and colleagues’ review of school engage-
ment [37], which concludes that children are more likely to retain
information and gain a deeper understanding of learning content
when engaging behaviorally (e.g., following rules), emotionally (e.g.,
experiencing affective responses), and cognitively (e.g., showing
flexibility in problem-solving) in learning activities.Meaningful
Learning focuses on incorporating new information into children’s
existing knowledge frameworks to facilitate understanding and re-
tention, like embedding learning activities within learners’ familiar
contexts. Its philosophical underpinning [10] distinguishes itself
from rote memorization, contending that effective learning can
occur when new concepts are assimilated into children’s existing
cognitive structures, allowing them to derive personal significance
from what they learn. Lastly, the Socially Interactive Learning
pillar encourages creating environments that promote group inter-
actions for information exchange and collaboration. This principle
is grounded in social development theory [118] and natural peda-
gogy [20], which underscore children’s innate tendency to learn
through social cues, dialogues, and collaborative problem-solving
[46]. With a robust theoretical foundation and empirical backing,
these “four pillars” constitute a holistic understanding of children’s
effective learning patterns. As such, we will employ this frame-
work to identify design features that potentially enhance children’s
learning effectiveness in the examined AI learning tools.

2.2 AI Education for Young People
The initiatives to educate children about AI, while having existed
for over five decades, have rapidly evolved in recent years due to
the growing prevalence of AI [66], especially recent GenAI. Accord-
ingly, various AI learning interventions have been developed for
children at different developmental stages, ranging from kinder-
garten [120] to secondary school [77]. These programs often aim to
equip young learners with AI knowledge and skills in three critical
areas: AI awareness, AI mechanics, and AI impacts, which form the
core content of existing AI curricula. Learning materials focusing
on AI awareness typically address the conceptual knowledge of AI,
including basic definitions of AI [6], its applications in various areas
[56], and its historical development [78]. The AI mechanics area
delves into the technical process behind AI, emphasizing aspects
such as common AI input and output types [32], machine learning
styles (e.g., supervised learning [79]), representative algorithms
[34], and basic steps to train AI models [33]. The AI impacts area
seeks to raise awareness of AI’s societal and ethical impacts [13]
and aims to shape children into responsible AI users and designers
[107].

Notably, many technologies have been designed, developed, and
deployed to facilitate teaching these AI concepts. For example,
Williams et al. [121] developed anAI-powered robot to engage learn-
ers in child-AI joint drawing, which helps cultivate AI awareness by
providing a tangible example of AI applications. Similarly, websites
like Teachable Machine [16, 62] enable children to train classifiers

using their own images, texts, and speeches, providing a hands-on
experience of supervised learning. Meanwhile, Minecraft’s video
game Hour of Code: Generation AI [28] addresses AI impacts by
guiding children to understand and solve four representative AI
ethical issues by fixing the back-end codes. These technologies
have generated new momentum for AI education and indicated the
potential of technology design to support children’s AI learning.
However, considering the diversity of these tools, there is a press-
ing need for a systematic overview of existing tools and structured
guidelines to aid designers in making evidence-based, informed
decisions when developing new tools (e.g., selecting appropriate
learning content, learning activities, and presentation formats for
children with different learning demands)—a key gap in advancing
children’s AI learning tool design.

2.3 Existing Surveys on Children’s AI Learning
Tools

Following the proliferation of children’s AI learning tools, multiple
surveys have been conducted to understand this emerging research
landscape (e.g., [11, 38, 58, 66, 77, 99, 105, 106, 116, 126]). These
studies, on one hand, focus on describing design features of a par-
ticular type of learning technologies, such as tools intended for a
certain age group (e.g., secondary school students [77]) and those
used in a specific geographical region (e.g., Asia-Pacific [106]), or
emphasized tools with specific presentation formats (e.g., digital
games [38]), tools that teach certain content (e.g., design compo-
nents of machine learning models [11]), and those that engage
children in specified activities (e.g., creating custom AI models
[116]). On the other hand, other surveys take a broader approach
by examining a wide range of tools across multiple design feature
dimensions, such as presentation format (e.g., robotics [99]), learn-
ing content (e.g., neural networks [66]), and learning activity (e.g.,
direct instructions [126]). However, these features are rarely ana-
lyzed collectively. Since the effectiveness of learning activities often
depends on the age-appropriateness of the content and how the
material is presented to children [65], it is crucial to approach these
dimensions jointly to reveal the synergies and interdependencies
that shape the outcomes of AI learning tools. This holistic overview
facilitates cohesive design decisions across dimensions, ensuring
they work together to meet diverse educational needs—insights
often overlooked in prior surveys examining each dimension in
isolation.

Additionally, existing surveys often include tools that do not
directly address AI concepts, such as coding environments focusing
on teaching computational skills rather than AI knowledge [58].
Several studies even encompass both AI instructional units (e.g.,
coursework and workshops without tool usage) and AI learning
tools in their scopes [66, 105, 106], making it difficult to disentangle
specific insights into tool design. Furthermore, very few studies
have examined children’s AI learning technologies from a design
perspective, which is crucial for guiding the development of more
effective learning tools. To the best of our knowledge, only one
study has explicitly addressed how learning tools can be designed to
teachmachine learning pipelines [11], highlighting a significant gap
in design guidelines for children’s AI learning technologies. In short,
the lack of systematic understanding of AI learning tools and their
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design features may impede educators, parents, and children from
fully benefiting from existing resources and constrain designers
and developers from creating new, more effective tools for children.
Therefore, the current study seeks to comprehensively survey and
examine the design features of AI learning tools for children.

3 Methods
We followed the PRISMA [80] protocol to systematically collect and
examine existing AI learning tools reported in research articles and
suggested by academic communities in AI and related domains.
This section details our methods to search, screen, and analyze
these tools.

3.1 Searching and Screening Tools
To identify children’s AI learning tools reported in research papers,
we conducted a systematic search in five digital databases that
cover main literature sources in computer science, engineering,
and learning sciences: ACM Digital Library, APA PsycInfo, ERIC,
IEEE Xplore, andWeb of Science. Our search query was guided by
keywords extracted from the abstracts of 10 papers focused on
designing AI learning technologies for children, i.e., [1, 11, 16, 39,
43, 51, 64, 110, 119, 141]. We organized these keywords into four
clusters based on each tool’s educational goal (e.g., AI ), the activity
it supports (e.g., learn), target learner (e.g., youth), and product
type (e.g., interface). Additionally, we included terms related to the
contribution type (e.g., design) to focus on papers about designing
rather than using AI learning tools. Our search comprised exact
terms (e.g., artificial intelligence), common abbreviations (e.g., AI ),
and plural forms with an asterisk (e.g., child*). Lastly, we linked
all separate terms under each group using the Boolean operator
OR and combined all five groups using the Boolean operator AND,
leading to our search query:

{“artificial intelligence” OR AI OR “machine learning”
OR ML} AND {comprehen* OR model* OR learn* OR
teach* OR understand*} AND {app OR application OR
interface OR platform OR tool} AND {child* OR pupil*
OR student* OR youth} AND {creat* OR design* OR
develop*}

We conducted our initial search in paper abstracts on August 26,
2023, and obtained 3,700 returns. On March 27, 2024, we carried out
an additional search using the same databases and search termswith
a publication date filter to capture the publications since our initial

search. This supplementary search yielded 732 more results, raising
the total to 4,432. To broaden our scope, we employed snowball
sampling by examining the references from 10 surveys on children’s
AI education [11, 38, 58, 66, 77, 99, 105, 106, 116, 126] and the tools
mentioned while not analyzed in these studies (e.g., AI lessons by
Minecraft [25–30]). We also reviewed the 2022 and 2023 Purdue
INSPIRE Engineering Gift Guides [35, 36], which recommend tools
and books for children’s learning in engineering-related domains
[74]. This effort added 689 returns, resulting in a total of 5,121 items
for screening.

Table 1 presents our four inclusion and exclusion to screen tools:
learning goal, target population, contribution type, and return pre-
sentation. We used a two-stage screening process to select the tools
within our analytical scope, consistently applying the same process
and criteria throughout both stages. First, we performed a broad
filter based on paper titles, abstracts, and tool descriptions, which
reduced our results to 125 items for further screening. Then, with a
detailed review of each full-text paper, tool descriptions, and sup-
plementary information (e.g., Educator Guides [25]), we identified
64 distinct AI learning tools from 80 results for analysis (see Figure
1 for the detailed process).

3.2 Analyzing Tools
We employed content analysis [54] to extract and analyze the design
features of the identified tools as detailed by the paper authors or
tool developers. We selected this method over direct interaction
with each tool as more than half of these tools (51.6%) were not
publicly available, limiting our access to first-hand experience; for
publicly available tools, the first author did interact directly with
them to deepen our analytical process. This approach has also been
widely employed in existing surveys on the design of children’s
learning tools in AI [105, 106] and other STEM areas, e.g., computer
programming [129, 130], proving its validity and suitability for
understanding learning tool design when direct access is restricted.

Our analysis focused on three design feature dimensions, cov-
ering both static (presentation format, learning content) and in-
teractive (learning activity). We also explored target age groups
and the interconnections between three design features and age
groups. Note that we did not delve into students’ learning outcomes
due to the lack of standardized evaluation methods [9, 111], the
absence of empirical evidence [25], and variability in outcomes
based on learner characteristics and contexts [65]. Nevertheless, to
present a comprehensive overview of current tool design and guide

Table 1: Tool inclusion and exclusion criteria

Dimension Inclusion Criteria Exclusion Criteria

Learning goal The tool focuses on AI learning. The tool does not focus on AI learning.

Target population The tool aims at children aged 18 and below. The tool is designed for the other age groups (e.g., college
students).

Contribution type The article or description introduces the design of an original
tool.

The article or description focuses on the use of an existing tool.

Return presentation The article or description is in English. The article or description is in other languages.
The tool is cited in a peer-reviewed research paper or an
academic community related to AI.

The tool is not cited in a peer-reviewed venue or an academic
community in AI-related subjects.
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Figure 1: Tool searching and screening process. Adapted from [80].

iterations of future tools, we examined methods for assessing the
effectiveness of empirically evaluated tools.

We used the qualitative analysis software MAXQDA [68] to sys-
tematically identify and examine the textual content on the tools’
design features, target age groups, and assessments. This involved
analyzing tool descriptions from the methodological sections of
included articles, which detailed design processes and principles
[12, 121] and the tools’ components, incorporated learning mate-
rials, and sequential steps of learning activities [89, 111]. We also
analyzed the texts addressing user studies, which documented chil-
dren’s interactions with the tools and offered insights into practical
design details, as well as target age groups and assessment meth-
ods. To enhance data coverage, we included tool descriptions from
other sources (e.g., Minecraft’s educator guides and curriculum
overviews [26]), which added AI topics addressed and breakdowns
of the tools’ learning activities. The entire coding process was per-
formed manually to ensure a nuanced understanding of the data.
After this initial coding, we grouped all codes into three codebooks
(see the codebooks of presentation format, learning content, and
learning activity in the supplementary file), each tailored to one
of the three design feature dimensions, setting the stages for more
focused analysis under each dimension.

For the dimension of presentation format, we consulted Yu and
Roque’s [129, 130] taxonomy that classified children’s coding kits
into three categories: physical kits (entirely tangible), virtual kits
(software applications without physical components), and hybrid
kits (combining both physical and virtual elements). We assigned
each included AI learning tool to one of these categories and induc-
tively coded each tool’s components, merging those with similar
functions into broader themes. For instance, virtual web apps that

visually demonstrate the workflows of k-means clustering [119]
and neural networks [64, 98] were grouped into the theme “AI
process visualization tools” within virtual tools. For hybrid tools,
we considered their physical and virtual components as a cohesive
whole to reflect children’s integrated interaction with them. For
learning content, we started with deductive coding, identifying the
texts related to the three core areas of AI education—AI awareness,
AI mechanics, and AI impacts—based on the literature on children’s
AI education (see Section 2.2). We then switched to inductive cod-
ing to organize detailed learning content within each area, labeling
AI concepts in the extracted texts and grouping similar ones into
larger themes. For example, “AI implication” and “responsible de-
sign” were grouped into the theme “AI impacts.” This open, axial
coding process continued till all extracted texts were analyzed to
ensure non-overlapping themes.

Regarding design features of learning activities, we first used
an inductive coding strategy to identify descriptions of activities
involving the tools. These activities were then grouped by their
ultimate goals, e.g., enabling children to observe a pre-trained AI
model’s workflow [64, 98] or to train a new model from scratch
[16, 62]. Similar goal-oriented activities were merged and appro-
priately named, resulting in four activity types: learning through
conventional instruction, experiencing, modifying, and creating. To
identify the design features potentially enhancing the effectiveness
of these activities, we examined each tool’s design through the “four
pillars of learning” [41] to seek the features facilitating students’
active, engaged, meaningful, and socially interactive learning. Sim-
ilar to our process of analyzing tools’ learning content, we first
deductively located the initial codes matching the conceptual defi-
nition of each pillar. Then, we followed a bottom-up approach to
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inductively coding the identified features and relevant texts within
each pillar, generating the codes for design features that may foster
effective learning activities, such as “connection to personal history.”
We compared these codes, merged and renamed similar ones, and
created higher-level themes repeatedly. This iterative process con-
tinued until all our initial codes were thoroughly analyzed and our
final themes adequately reflected the coding results.

For target age groups, we categorized each tool’s intended learn-
ers into five key developmental stages [87]: kindergarten, lower
primary grades, upper primary grades, middle school, and high
school. To accommodate different educational structures across re-
gions and countries, we referenced the national education systems
related to the tools’ development [19]. For tools without specified
age groups, we inferred target ages based on participants who suc-
cessfully engaged with the tools and exhibited positive AI learning
outcomes (e.g., completing AI projects [139]). Next, we explored the
interconnections among design features and target age groups, fo-
cusing on 1) the connection between learning content and activities,

namely, which activities the tools support for teaching a certain
area of AI knowledge, 2) the alignment of presentation formats
with specific activity types, and 3) presentation formats, learning
content, and learning activity types designed for each age group.
Lastly, we analyzed the assessments of included tools from user
studies, focusing on assessed variables (e.g., learning outcomes [9])
and assessment methods (e.g., project assessments [140]).

Two authors participated in the data analysis. The first author
generated the initial codes, while the second author contributed
to analyzing, reviewing, and refining all codes and themes. The
codebooks were consistently updated throughout this iterative
process. Then, a research assistant with qualitative analysis expe-
rience—who was not part of data analysis—coded nine randomly
sampled papers on six distinct tools with the themes generated
from the data analysis. The coding results were compared to those
finalized by the two authors and showed almost perfect agreement
(𝜅 = .82) [70], indicating the high reliability of our analysis.

Figure 2: Taxonomy of the identified design features
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Figure 3: Four categories of virtual tools include: (a)DoodleIt, an AI process visualization tool that illustrates how a convolutional
neural network classifies images [64, 98]; (b) Hour of Code: Generation AI, an educational game where players address privacy
issues by revising back-end code [28]; (c) Teachable Machine, a non-coding ML development platform for creating custom
classifiers [16, 62]; and (d) theMo website, which provides digitized traditional resources like lectures and assessments [124].

4 Findings
Among the 64 analyzed tools, 58 specify their intended age groups,
with six vaguely mentioning being designed for children [16, 31,
45, 55, 75, 135]. These tools span all five developmental stages, with
most aimed at middle schools (ages 12–15, 63.8%) and upper primary
grades (ages 9–12, 63.8%). There is less emphasis on high schools
(ages 16–18, 43.1%) and lower primary school grades (ages 6–9,
39.7%), with the least emphasis on kindergartens (ages 6 and below,
3.4%). The next sections present our findings on the design features
of current AI learning tools for children, categorized into static
features (presentation format and learning content in Sections 4.1
and 4.2, respectively) and interactive features (learning activity in
Section 4.3). Please see Figure 2 for an overview. Section 4.4 outlines
the interconnections between these design features and target age
groups as well as the assessment methods for the analyzed tools.

4.1 Presentation Format
Most analyzed AI learning tools are presented as virtual tools (75%),
while the remaining are hybrid tools (25%). Notably, none of the
included tools are entirely physical. Nonetheless,Machine Learning
Machine included only physical components in its earlier version
[52] but evolved into a hybrid tool in its most recent iteration
[12]. Specifically, virtual tools can be further classified into four
categories:

• AI process visualization tools are web apps featuring vi-
sually interactive elements (e.g., diagrams and charts) that
demonstrate how AI functions. For instance, DoodleIt visual-
izes how a convolutional neural network recognizes sketches
via multiple layers and feature maps [64, 98] (see Figure 3a).
Other examples include image captioning systems that de-
note the image parts AI used for gender classification [72]
and visual aids (e.g., pie charts, histograms, and word clouds)
explaining ML processes in keyword extraction [53].

• Educational games integrate AI concepts into game me-
chanics and narratives. This category includes adventure
games where learners tackle AI ethical issues in adventure
scenarios [28] (see Figure 3b), action games promoting phys-
ical activities (e.g., guiding a chick across a busy street using
postures captured on camera [102]), and puzzle games that
challenge players to rotate multi-cube objects in latent space
to match given shadows [61].

• Machine learning development platforms provide en-
vironments for designing, training, and deploying ML mod-
els. These include extensions for existing coding platforms,
such as Scratch and MIT App Inventor, introducing new
blocks for defining labels [135], collecting and labeling data
[7, 48, 49], actuating outputs [84], and incorporating mod-
els into broader systems like Alexa [22, 23]. Additionally,
there are new coding environments for children to develop
AI projects, which either imitate existing coding platforms
while introducing new blocks for model building (e.g., the
“sensor” block to collect data [90]) or serve as companion
systems for model deployment (e.g., a mobile app that chil-
dren can customize by writing in Swift to export the models
they created in a non-coding interface [112]). Lastly, there
are non-coding model development platforms to design and
train ML models. They consist of multiple visual interfaces
for children to develop a custom ML workflow by dragging
and dropping components that represent the main stages in
the ML pipelines, typically covering data collection, labeling,
and model testing [16, 62] (see Figure 3c).

• Digitized traditional resources are digital platforms en-
hancing conventional learning activities with interactivity.
Examples include e-books containing AI lessons, quizzes,
and integrated coding environments [134, 136] (see Figure
3d), as well as websites offering live-streamed AI lectures,
assessments, and supplementary resources like codes and
datasets [124].

In addition to these four types of virtual tools, we also identified
four types of hybrid tools:

• Web or mobile apps to train AI models using data col-
lected from physical sensors, such as Scratch Nodes ML
[2, 42] (see Figure 4a) that provides a web interface for chil-
dren to label their gestural data collected from a stick-like,
physical device. Similarly, the mobile app AlpacaML [139–
141], which allows children to train gestural classification
model, uses micro:bits to capture acceleration data from their
body parts.

• Web ormobile apps to control physical actuators: These
tools link outcomes of ML models trained through virtual
interfaces to physical devices. For instance,ML-Machine uses
micro:bits to modify LED displays and activate motors based
on results from web-trained ML models [14] (see Figure 4b).
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Figure 4: Four types of hybrid tools (physical parts at the top and virtual parts at the bottom): (a) Scratch Nodes ML, a web
interface for training gesture classifiers with data from a stick-like device [2, 42]; (b) ML-Machine, a web app for training
models to control micro:bits’ LED displays attached to daily items [14]; (c) Machine Learning Machine, which uses two tangible
boxes to train models on students’ drawings and graphical web pages explaining model workflows [12]; and (d) a video game
with tabletop adaptations enables learners to explore AI decision-making in gaming strategies [103].

• Physical data labeling devices plus virtual captioning
webs, including web pages to explain underlying processes
of ML models trained using tangible devices. For example,
Machine Learning Machine features two physical boxes, one
for labeling children’s drawings and another for testing mod-
els with new drawings. The accompanying web pages, ac-
cessed through QR codes on the boxes, allow children to
explore and modify the visualized ML process inside the
boxes (see Figure 4c).

• Video games with board game adaptations, character-
ized by digital games paired with analog board versions. For
instance, in Sintov et al.’s laptop game [103], students ini-
tially play against AI opponents on 2D grids to experience
AI-enabled gaming strategies. The game is later adapted into
a board game for two groups to compete on a physical map,
where students simulate AI’s decision-making observed in
the virtual game (see Figure 4d).

4.2 Learning Content
The analyzed tools cover diverse AI learning content across three
key areas: AI awareness, AI mechanics, and AI impacts. Table 2
summarizes the content within each area.

AI Awareness. More than half of the tools (68.8%) aim to build
a conceptual understanding of AI through three topics: AI defini-
tion, AI application, and AI history. AI definition introduces the
basic attributes of AI, including its ability to imitate human intel-
ligence [136], its non-humanoid, programmable nature [28], and
its difference from traditional computing systems [90]. For AI ap-
plication, the tools explore AI’s integration across six application
areas: 1) art and creativity (e.g., AI-generated artwork and games
[4, 102, 124]); 2) education (e.g., AI robots explaining algorithmic
reasoning for children [121]); 3) environment (e.g., AI for natural
resource management [25, 30, 82, 83]); 4) healthcare (e.g., AI in dia-
betes prediction and pandemic management [84, 124]); 5) service
(e.g., conversational AI and individualized recommending systems
[15, 55, 109, 138]); and 6) transportation (e.g., AI in intelligent vehi-
cles and traffic management [1, 39, 55]). For AI history, the related
content introduces the origin and key historical milestones of AI,
such as the biography of John McCarthy [136].

AI Mechanics. All included tools (100%) address AI mechanics,
teaching AI’s technical rationales and the processes of developing
ML models. It includes three sub-areas: AI input, learning proce-
dure, and AI output. AI input focuses on data—the information AI
uses to learn and make decisions—covering the concept of data

Table 2: Learning content of children’s AI learning tools

Content Area Definition Sub Area Explanation Example

AI Awareness Developing the basic
understanding of AI

AI definition AI’s defining characteristics [91, 134]
AI application AI use cases across industries [22, 121]
AI history Origins and milestones of AI [136]

AI Mechanics Interpreting technical
rationales behind AI

AI input Impact and preparation of data in AI [12, 18]
Learning procedure Underlying processes of ML models [79, 119]
AI output Formats for manifesting ML outcomes [9, 24]

AI Impacts Engaging in AI in an
informed, ethical way

AI implication Benefaction and ethical issues of AI [28, 72]
Responsible design How to design responsible AI systems [1, 112]
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[18, 119], discussing data diversity [111], and emphasizing the di-
rect influences of data on AI [12]. It also addresses data collection
methods, introducing common types of sensors and data for AI
(e.g., visual [42, 102], audio [95–97], and physical [139]), as well as
alternative data sources like public repositories (e.g., online news)
[53, 117, 131] and private inputs (e.g., file uploading) [64, 91, 98].
Some tools further integrate the steps of data preparation for model
training, including integration [25], analysis and cleansing [18],
shuffling and splitting [51], and feature engineering [51].

Learning procedure concentrates on workflows of ML models,
explaining basic concepts such as inferences [21], algorithms [1],
and model-data-output relationship [12]. It also explores four pre-
dominant ML styles: supervised, unsupervised, semi-supervised,
and reinforcement learning. Among the 54 tools that introduce
these styles, most focus on supervised learning (81.5%), followed by
unsupervised (13.0%), reinforcement (9.3%), and semi-supervised
learning (3.7%). Tools typically explain these styles based on their
defining concepts (e.g., supervision [79]) and working procedures
of representative algorithms to support each style, including deci-
sion trees [117], k-means clustering [119], neural networks [4], and
Q-learning [79]). Beyond ML styles, there is a focus on teaching
how to build ML models, with most tools involving model training
using block-based coding (50%) or workflow-based platforms with-
out coding (46.3%), with fewer using text- (11.1%) or flow-based
syntax (1.9%). These tools often incorporate a full ML training pro-
cess, from basic tasks like data collection [111] and labeling [31] to
advanced stages (e.g., algorithm selection [18] and parameter defini-
tion [90, 115]). They also explore model evaluation, explaining key
concepts (e.g., accuracy and generality[12]), evaluation methods
(e.g., cross-validation [124]), and outcomes of poor performance
(e.g., over- and under-fitting [61]). Lastly, several tools cover strate-
gies for enhancing model performance, such as data and parameter
adjustments [79, 111] and optimization algorithms [89, 115].

AI output examines howAI manifests its learning outcomes. Four
main formats of AI outputs constitute the related content: 1) visual,
such as on-screen indicators (e.g., green thumb-up for classification
results of healthy foods [122, 123]) and LED lighting effects [2, 42];
2) textual (e.g., classification results and evaluation metrics like
confidence levels [72]); 3) audio, like sound effects and speech to
convey ML outcomes [5, 139]; and 4) physical, characterized by
robotic movements [22, 23, 45] and vibration [14].

AI Impacts. A limited number of tools (15.6%) introduce AI’s
societal and ethical impacts. On one hand, they highlight the double-
sided nature of AI implication, discussing both its potential benefits

for social welfare (e.g., enhancing mental well-being [121]) and AI-
specific ethical concerns, which comprise the lack of fairness (e.g.,
discrimination by age [1], gender [72], and disability [28]), privacy
and security (e.g., disclosing one’s home address to the public [28]),
and intended misuse of AI (e.g., harmful technology [1]). Some
tools further delve into the root causes of these ethical dilemmas,
such as dataset biases [12, 111, 112] and algorithmic biases [72].
On the other hand, the relevant tools seek to cultivate attitudes
and behaviors required for responsible design of AI, promoting the
creation of ethical AI systems by emphasizing the significance of in-
clusivity, transparency, and accountability while avoiding bias and
harm [28, 112]. These tools also discuss practical skills for creating
responsible AI, which highlight considering diverse stakeholder
perspectives in dataset curation [1, 111, 112].

4.3 Learning Activity
4.3.1 Activity Types. We identified four types of learning activities
in the analyzed tools, progressing from conventional instruction to
experiencing, modifying, and creating. Note that some tools support
multiple activities to provide auxiliary support to primary tasks.
For instance, children can modify a completed tutorial AI project
before creating an entirely new one [82, 83], and in such cases, we
labeled the tools’ activity based on their primary tasks, i.e., creating.
These activity types include:

• Learning through conventional instruction, supported
by very limited tools (6.3%), adopts traditional methods en-
hanced with interactive elements. This includes reading AI
e-books [134, 136] (see Figure 5a), taking live stream AI lec-
tures and asynchronous coding practices [124], and engaging
with in-game AI lessons [94, 115].

• Learning through experiencing, the main activity of 10
tools (15.6%), engages children in exploring how AI works
in specific application scenarios. It includes teaching AI con-
cepts by involving children to directly play with AI applica-
tions, such as drawing with robots [5] (see Figure 5b) and
enjoying AI-powered games, music, and toy cars [45, 102],
and engage in problem-solving tasks (e.g., coding an agent
to categorize flammable items [31]). Some tools also present
children with ML working processes through interactive vi-
sualization and simulation. For example, the game ML-Quest
tasks players to solve a maze by referring to previous rou-
tines, mimicking the supervised learning process through
an immersive experience.

Figure 5: Four learning activity types, including: (a) AI World that supports conventional instruction by guiding children to
read an AI e-book [136]; (b) the robot Jibo, which enables learning through experiencing AI’s applicability in collaborative
drawing [5]; (c) Neural Network Playground, which promotes learning through modifying neural network weights [79]; and (d)
AlpacaML allowing AI learning through creating custom gestural classifiers [139–141].
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Figure 6: Design features potentially supporting active learning: (a) Doodlebot achieves exploratory learning by enabling
children to explore AI-generated drawings [121]; (b) Shadow Matching Game allows problem-based learning by tasking children
to match multi-cube objects to given shadows [61]; and (c) AI Made By You supports project-based learning by guiding children
to create their conversational agents [109].

• Learning through modifying (20.3%) emphasizes hands-
on experimentation with pre-trained AI models and appli-
cations. These tools support children in altering model pa-
rameters (e.g., changing data labeling rules [117, 131, 132]
and modifying neural network weights [79]; see Figure 5c)
and observe the subsequent outcomes. These activities also
expand to revising codes (e.g., adding or deleting coding
blocks of a completed project [28]) and switching model
types (e.g., Naïve Bayes vs. Support Vector Machine [18]) to
help children understand how this affects ML processes and
outcomes.

• Learning through creating, the primary activity of most
tools (57.8%), engages learners in defining their activity goals
and creating AI projects from scratch. This includes a se-
ries of tasks to reflect different stages of ML model devel-
opment (see Figure 5d), mainly starting with label curation
(e.g., defining gesture types for recognition [139–141]) and
data collection (e.g., building individual or shared datasets
[55, 111, 112]). Then, such tools often involve children in
training (e.g., labeling data and setting model specifications
[16]) and testing their models (e.g., playing a game scoring by
the model’s confidence levels [111, 112]). Several tools also
support model deployment for real-life applications, such
as integrating a conversational AI into devices compatible
with Google Assistant [109], uploading models into coding
platforms (e.g., Scratch) to make games [139], and redesign-
ing daily items with models (e.g., turning plush toys into
interactive devices [113]).

4.3.2 Design Features Aligning with Four Pillars of Learning. Based
on the definitions of the “four pillars of learning” [41], we found
four sets of design features that may improve the effectiveness of
children’s AI learning activities.

Active Learning. The first design feature set may promote ac-
tive learning through Constructivist Approaches, which involve
interactive manipulation and hands-on tasks to enable children to
actively explore AI concepts. This feature is achieved by tools sup-
porting three sub-classes of activities: exploratory, problem-based,
and project-based learning. Exploratory learning describes those
that grant children autonomy and flexibility to explore AI at their
own pace, like freely tinkering with AI-themed e-books [134, 136],
AI applications [121] (see Figure 6a), and visualized ML workflows

[18, 64, 98]. By introducing certain levels of structure in learning
activities, problem-based learning encourages students to address
specific AI-related problems and acquire AI concepts in this active
problem-solving process. For example, the Shadow Matching Game
[61] (see Figure 6b) includes a clear game quest—rotating three
multi-cube objects to match given shadows—leading children to
discover the simulated working process of variational autoencoders.
Lastly, tools featuring project-based learning include more struc-
ture in learning activities. They often navigate children through AI
projects using pre-defined objectives and outcomes (e.g., providing
a clear milestone and checkpoints as students progress in learning
activities [95–97], focusing on creating and iterating on a custom
AI model or application from project ideation to model deployment
[109] (see Figure 6c).

Engaged Learning.The second group of design features—including
adaptive challenges, interactive feedback, and motivation reinforce-
ment—may help retain children’s attention during learning activ-
ities and thus foster engaged AI learning. Adaptive Challenges
focus on adapting learning activities to meet diverse learning needs,
often using a “low floor” [93] for easy access. This is implemented by
reducing the complexity of learning activities, such as concentrat-
ing on flow- and block-based coding activities to minimize syntax
errors [85], avoiding exposure to sophisticated yet unnecessary ma-
terials (e.g., hiding detailed parameters of pre-trained ML models
[24, 49] and including minimal text in AI learning activities to cater
to young children’s language ability [123] (see Figure 7a), and short-
ening learning tasks to match children’s limited attention spans
[117]. Some tools also offer instructional support by presenting
children with starter projects [55], providing coding hints [28], and
designing coding blocks with shapes and colors that suggest their
functions yet hiding irrelevant options [82, 83]. In addition, several
tools are designed using intuitive, minimalist interfaces to enhance
visual clarity and reduce perceived complexity [21, 117], making
learning experiences more approachable and engaging for diverse
learners. On the other hand, the examined tools also tackle adaptive
challenges with a “high ceiling” [93] to allow advanced exploration
through leveled, flexible scaffolding, which is typically achieved by
structuring learning activities from a basic to advanced level, e.g.,
establishing multi-level tasks increasing gradually in technical com-
plexity [25–27, 29, 30]. Many tools also provide more experienced
learners with a chance to delve into complex AI concepts, such
as an advanced mode for changing parameters of models trained
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Figure 7: Design features potentially supporting engaged learning: (a) PopBots builds a low floor by simplifying learning
activities with minimal texts [122, 123]; (b) Teachable Machine, which builds a high ceiling by offering advanced options for
tweaking model parameters [16, 62]; (c) a virtual-reality car-driving platform that includes attention-capturing feedback [75],
(d) DeepScratch providing cause-and-effect feedback by showing results based on input [7]; (e) a companion game for Co-ML to
integrate reward mechanisms by scoring model confidence levels [111, 112]; and (f) PRIMARYAI that motivates children to
explore AI applications in wildlife protection through a narrative [82, 83].

in basic modes [16, 62] (Figure 7b), coding blocks for exploring
more sophisticated algorithms [21], and the “information button”
to access extra learning content [117, 131, 132].

Another design feature for engaged learning is Interactive Feed-
back, which further encompasses attention-capturing and cause-
and-effect feedback. Attention-capturing feedback is typically de-
signed with multi-modal elements, such as visual, audible, and
tactile formats, to engage and retain children’s focus on AI learning
activities. Examples are appealing animations [102], game scenarios
[89], and augmented or virtual reality environments [75, 136] (Fig-
ure 7c). On the other hand, Cause-and-effect feedback helps learners
explore and manipulate AI concepts dynamically, which includes
computers and robots’ reactions to children’s actions, e.g., instantly
providing classification results when students input new data [7]
(see Figure 7d) and robots moving in response to learners modifying
model parameters [79].

Finally, Motivation Reinforcement potentially facilitates en-
gaged learning using extrinsic motivators to enhance children’s
engagement and persistence in learning activities. This feature
involves introducing reward mechanism, providing reinforcement
when learners achieve goals aligned with AI learning objectives,
e.g., awarding scores based on model accuracy [111] (see Figure
7e) and distributing in-game currency when students complete
missions [1]. The other approach is establishing a goal-oriented
narrative that motivates children to progress through AI learning
activities by becoming invested in the narrative’s outcomes. Such
goals are often thought-provoking, such as missions to destinations
like Europa [85] and future scenarios [1], and seek to promote so-
cial welfare, e.g., combating discrimination [1, 28] and protecting
environment [25, 82, 83] (see Figure 7f).

Meaningful Learning. The third design feature set may foster
meaningful AI learning with Personal Relevance, which enhances
the connection between AI learning experiences and children’s

Figure 8: Design features potentially supporting meaningful
learning: (a) ChemAIstry embedding AI learning activities
into children’s familiar context of school chemistry labs [67]
and (b)Machine Learning for Kids, which enables students to
train personally relevant ML models by supporting various
types of input [55].

funds of knowledge. These designs focus on creating familiar con-
texts by anchoring AI learning activities in children’s personal
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experiences. By embedding familiar items, daily contexts, and ex-
isting knowledge, these activities aim to make AI concepts more
relatable, thereby enhancing students’ understanding and reten-
tion. For example, some tools ground AI learning activities into
common, real-life scenarios, e.g., playing a food recognition game
mirroring family cooking experience [111] and labeling safe and
unsafe items in school chemistry labs [67] (see Figure 8a). On the
other hand, several tools foster personal relevance by constructing
a “wide wall” [93], encouraging creative expression by enabling
children to design and personalize elements in their ownAI projects.
For example, they can select avatars and voices for their conversa-
tional AI [109] and customize the appearances of their in-game AI
agents [1, 117, 131, 132], which strengthen the perceived relevance
of learning activities. Other tools also enable students to adapt
AI projects to topics with personal significance to them, such as
allowing them to define labels for classification model [9], collect
personally meaningful data [112], and use various Scratch exten-
sions [22, 23] and different model input and output types [55] (see
Figure 8b) to create expressive projects.

Socially Interactive Learning. The fourth design feature set,
which likely facilitates socially interactive AI learning, can be
grouped based on the types of interactions supported by the tools:
in-person, remote, and para-social interactions. The first feature
can support In-Person Interactions, namely, direct, face-to-face
teamwork, by creating collaborative learning experiences and peer
competition. Collaborative learning encourages exchange of knowl-
edge between learners to deepen their understanding of learning
content, achieved by organizing in-class discussions for students
to explain AI concepts to one another (Figure 9a) and assigning
complementary roles for children to collaborate on shared goals

(e.g., one providing data while the other managing model train-
ing interfaces [2, 42]). Conversely, some tools motivate learners
through peer competition, such as developing a dedicated shared
interface for organizing in-class competitions, where students train
models to achieve the highest prediction accuracy [51] (Figure 9b).

The second design feature for socially interactive learning con-
centrates on Remote Interactions. On one hand, this is achieved
through synchronized collaboration, which allows children to con-
nect and collaborate with peers using online platforms and cloud
services. For example, they can contribute to multi-user datasets
stored and synchronized with CloudKit [111] (Figure 9c). On the
other hand, some tools create community-based learning networks,
which enable students to access AI learning resources by sharing,
using, and building upon each other’s work. These interactions in-
clude the exchange of datasets and models and project collaboration
[124, 134] (Figure 9d).

The last design feature supports Para-Social Interactions be-
tween children and non-human or virtual characters, likely fos-
tering AI learning activities by taking two roles. As tutors, the
characters present and explain learning materials, such as the in-
game non-player character introducing the concept of fairness to
players [28] (see Figure 9e). As companions, they provide positive
affirmations to encourage exploration of learning activities (e.g., an
in-game agent saying, “You did well solving the problem!” [28]; see
Figure 9f). Efforts are also made to strengthen children’s emotional
connections with non-human characters, such as designing a robot
with expressive facial displays to enhance empathy and mental
engagement [123].

Figure 9: Design features potentially supporting socially interactive learning: (a) SmileyCluster can promote collaborative
learning by engaging children in exploring the visualized process of k-means clustering in pairs [119]; (b) VotestratesML
integrates a competition panel for students to compare model accuracy with each other [51]; (c) Co-ML supports remote,
multi-user data collection with cloud services [111, 112]; (d)Mo builds a community-based network to share and use AI learning
resources [124]; (e) Hour of Code: Generation AI involves a virtual character explaining AI impacts through conversations with
children; and (f) offering positive affirmations to encourage students to navigate through learning activities [28].
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Figure 10: Interconnections among design features and target age groups. The line transparency shows the relationship strength
based on the number of tools within each category. A more opaque line means a stronger connection.

4.4 Interconnection Overview of Design
Features and Assessment Methods

Figure 10 illustrates the interrelationships among design features
and target age groups. For the connection between presentation
format and learning activity, virtual and hybrid tools support all
four categories of learning activities, except for conventional in-
struction, which is solely supported by virtual tools and not by
hybrid tools. This pattern is consistent across other learning activi-
ties—experiencing, modifying, and creating—which are primarily
supported by virtual tools (70%, 92.3%, 67.6%, respectively), with
hybrid tools offering less support (30%, 7.7%, 32.4%). Regarding
the relationship between learning activity and content, all four
AI learning activities are applied to teach all three areas of learn-
ing content. A clear trend also emerges, showing that all three
content areas are predominantly taught by tools emphasizing learn-
ing through creating. Among tools covering AI awareness, most
support creating activities (68.2%), followed by modifying (11.4%),
experiencing (11.4%), and conventional instruction (9.1%). Simi-
larly, tools for teaching AI mechanics focus mainly on creating
(57.8%), with smaller proportions supporting modifying (20.3%),
experiencing (15.6%), and conventional instruction (6.3%). For tools
addressing AI impacts, the majority also prioritize creating (50%),
followed by modifying (30%), experiencing (10%), and conventional
instruction (10%).

Regarding the alignment of design features with target age
groups, the analyzed tools address all three key areas across all
ages, with AI mechanics consistently emphasized at every stage. AI
awareness is particularly prominent in tools designed for younger
children, appearing in 87.0% of tools for lower primary grades and
73.0% for upper primary grades, but it declines in middle school
(62.2%) and high school (56%). Content on AI impacts is also more
prevalent for younger groups, with 26.1% coverage in lower pri-
mary grades and 24.3% in upper primary grades, compared to 21.6%

in middle school and 16% in high school. For learning activities,
creating is the dominant activity for lower primary (65.2%), upper
primary (62.2%), and middle school (62.2%) groups, but it is less
prominent in high school (48%). Lastly, regarding presentation for-
mats, virtual and hybrid tools are evenly distributed across the four
age groups2 without showing any clear age-related trends.

As for tool assessments, 46 tools (71.9%) were empirically evalu-
ated based on participants’ learning outcomes (e.g., understanding
of AI topics [9]), learning experiences (e.g., attitudes [97], confi-
dence [138], and motivation [79] toward AI learning), or tool usabil-
ity (e.g., perceived satisfaction [7] and ease of use [89]). Learning
outcomes were primarily measured through tests assessing stu-
dents’ AI knowledge after using the tools [102] and project evalu-
ations that examined their ability to complete AI-related projects
[139]. Learning experiences and tool usability were mainly assessed
with self-reported questionnaires [117] and interviews to gather
children’s subjective feedback on their interactions with the tools
[112], occasionally supplemented by observations that provided
objective records of student engagement [43].

5 Discussion
AI stands as one of the most transformative technological advance-
ments of both the present and likely the future, creating a pressing
need to promote early AI education through the design of effective
learning tools. Aligning with this need, we systematically surveyed
existing AI learning technologies for children and analyzed their
design features across three key dimensions: presentation format,
learning content, and learning activity, providing a comprehensive
overview of current design trends in children’s AI learning tools. In
this section, we discuss how our findings contribute to the existing
knowledge on designing AI learning tools for children (Section 5.1).
Building on this foundation, we further reflect on the gaps and
2With the significantly smaller number of tools for kindergartners, we excluded this
stage from interconnection analysis due to insufficient representation.
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share implications for future design and research in children’s AI
learning technologies (see Section 5.2).

5.1 Advancing the Current Understanding of
Children’s AI Learning Tool Design

In response to the growing importance of AI education, an increas-
ing number of technologies have been developed to help children
understand AI, resulting in 64 distinct tools examined in this study.
These tools showcase a rich and diverse design landscape for chil-
dren’s AI learning, as reflected in their varied design features across
the dimensions of presentation format, learning content, and learn-
ing activity (see Figure 2). Our findings contribute to the under-
standing of children’s AI learning tool design in two key ways.
First, through a systematic tool searching and filtering process,
we captured a broader and more up-to-date range of AI learning
tools compared to previous surveys, offering a more comprehen-
sive perspective on their design features. For example, within the
presentation format dimension, we identified two previously unex-
amined types of virtual tools (AI visualization tools and digitized
traditional resources) and four new types of hybrid tools, extending
prior surveys that only considered physical and virtual components
separately (e.g., [77, 126]). For learning content, we proposed a
novel three-dimensional framework to thoroughly outline learning
materials across tools, covering previously overlooked topics such
as AI awareness (e.g., AI’s definition and history [66]), mechanics
(e.g., AI input and output types [105, 106]), and impacts (e.g., cre-
ating responsible AI [38, 77]). Additionally, we organized a series
of AI learning activities—ranging from conventional instruction
to experiencing, modifying, and creating-based learning—along
with four design feature sets that may enhance the effectiveness of
these activities by aligning with the theoretical framework of the
“four pillars of learning” [41], complementing existing reviews that
only analyzed specific activity types (e.g., [11, 116]). Together, our
findings provide a more comprehensive and current overview of
design features in children’s AI learning tools, highlighting their
potential to ensure educational effectiveness and broadening the
understanding of design trends in this emerging field for design
and research.

Additionally, we developed structured taxonomies to systemati-
cally categorize the diverse design features of children’s AI learning
tools based on their core functionalities (Figure 2). Our taxonomies
go beyond the enumeration found in existingworks, which often list
disparate design features without deeper integration. For instance,
instead of treating distinct AI concepts (e.g., neural networks [66]
and nearest-neighbor algorithms [77]) as isolated pieces of learning
content, we grouped them under a broader theme called “learning
procedure” within the category of AI mechanics. Similarly, rather
than viewing “coding” as a standalone activity, as seen in earlier
surveys [77], we included it in our higher-level category, “learning
through creating,” highlighting the essential role of coding in en-
abling children to develop AI projects. These novel taxonomies offer
a more comprehensive understanding of the foundational principles
guiding the current design of AI learning tools for children, mov-
ing beyond mere description to establish meaningful connections
across tools. To this end, our findings provide a valuable reference
for both educators and designers seeking to broaden and deepen

their understanding of children’s AI learning tool design. Specifi-
cally, our proposed taxonomies could help educators explore how
specific AI learning content might be effectively conveyed through
tools with particular presentation formats and learning activities,
supporting the strategic planning of interventions tailored to var-
ious learning needs and educational contexts. For designers, the
taxonomies offer a way to identify key features of existing AI learn-
ing tools and suggest potential objectives for future designs that
aim to address the diverse needs of children and educators. How-
ever, the practical applicability and effectiveness of the taxonomies
require further validation in future research. In summary, we offer a
practical guide for leveraging existing AI educational resources and
advancing future AI education through thoughtful and strategic
learning tool design.

5.2 Gaps and Implications for Future Design
and Research on Children’s AI Learning
Tools

Our findings also reveal significant gaps in the design of current AI
learning tools for children, which may result in an overall quality
that fails to fully meet their diverse learning needs. In this section,
we discuss these gaps and offer recommendations for creating more
engaging and effective tools in the future.

5.2.1 Lacking Physical Formats and the Associated Tangible
Learning Experiences. A critical gap identified in the examined
tools is the absence of physical kits (𝑁 = 0) and physical compo-
nents, with 75% of current AI learning tools for children consisting
solely of digital elements, making them overwhelmingly virtual.
While virtual tools offer versatility and scalability, the lack of phys-
ical components raises concerns, particularly given the unique
advantages of tangible learning experiences. Research on children’s
preferences for coding kits has shown that tangible experiences
with physical tools can provide comfort and enjoyment during cod-
ing tasks, increasing engagement without relying solely on digital
devices [100]. Additionally, physical tools often encourage greater
parental involvement in children’s AI learning, as these components
are more visible in the home environment compared to virtual tools,
which are confined to screen interactions [128]. In contrast, virtual
tools frequently carry negative perceptions, such as parental con-
cerns about excessive screen time [127] and its potential impact on
socio-emotional development [69], which reduce parental support
in helping children navigate new concepts [73]. This lack of physi-
cality in tool formats represents a missed opportunity to address
the needs of both children and parents. Therefore, future research
and design efforts should prioritize exploring and leveraging
the benefits of physical formats, such as robotic systems [108]
and tactile kits [71], to better bridge technology with real-world
interaction and enhance AI learning experiences and outcomes.

5.2.2 Overemphasis on Learning AI Mechanics. There is a
disproportionate emphasis on teaching AI mechanics—particularly
supervised learning (81.5%)—at the expense of other critical content
areas (AI awareness and AI impacts). While teaching AI mechanics
is important, this narrow focus on supervised learning overlooks
the vast array of machine learning algorithms, potentially restrict-
ing children’s holistic understanding of AI and their engagement
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with machine learning styles. Therefore, we encourage designers to
extend learning content to include diverse machine learning
paradigms, such as workflows, application contexts, and algo-
rithms relevant to unsupervised [119], semi-supervised [26, 29],
and reinforcement learning [79], supporting children to develop a
more comprehensive understanding of AI mechanisms, their capa-
bilities and limitations, and ultimately enabling them to apply AI
applications more effectively and critically in real-life contexts.

On the other hand, the limited emphasis on AI awareness and
AI impacts hampers children’s ability to comprehend and engage
with AI as a socio-technical system—an important motivation for
developing AI literacy among children. It is particularly concerning
that none of the analyzed tools sufficiently address the responsi-
ble consumption of AI, such as guiding children on identifying
scenarios where deploying AI technologies may be ethically or
socially inappropriate (e.g., when privacy, intimacy, and safety are
at stake). Such conceptual knowledge of AI not only scaffolds com-
prehension of the technical procedures but also allows children
to critically interpret and assess AI’s societal role and its broader
implications. We advocate for future design efforts to expand the
focus on conceptual AI knowledge, especially AI awareness
and AI impacts, to prepare children of different age groups with a
more thorough understanding of AI as a socio-technical system for
navigating the challenges and opportunities of an AI-driven world.
Lastly, given the recent prominence of GenAI, the learning content
could be expanded to further include topics such as its fundamental
mechanisms, capabilities, and various application scenarios.

5.2.3 Dominance of Classification-Focused Creative Activ-
ities. Our findings also highlight significant gaps in the design
of tool-supported learning activities. Most of the examined tools
focus on engaging children in creating custom AI projects, par-
ticularly classification models. This emphasis may stem from a
focus on teaching AI mechanics, specifically supervised learning,
which is predominantly used for classification tasks [101], along
with a concentration on creating-based activities (59.4%). However,
there are other types of activities that may warrant more diverse
AI learning experiences. For instance, Kaspersen and colleagues
[52] designed an unplugged card game to teach the ethical princi-
ples of AI design. In this game, students use data cards (describing
data sources such as news and user locations), people cards (repre-
senting stakeholders like colleagues and siblings), and ethics cards
(posing questions about ethical issues, such as privacy concerns)
to reflect the potential impacts of a supervised learning system
on various stakeholders. Resonating with this card game, we en-
courage designers to diversify AI learning activities in future
AI learning technologies, thereby enhancing children’s AI learn-
ing experiences with a broader range of activity options and more
effectively addressing diverse individual preferences for learning
activities. However, the current lack of empirical evidence leaves
it unclear which learning activities are best suited for each age
group, emphasizing the need for a more nuanced approach to age-
appropriate tool design. Future research is needed to explore the
suitability of technology-supported AI learning activities for dif-
ferent ages. Such research can help educators and designers select
and develop tools that align with children’s developmental charac-
teristics, maximizing educational benefits at various stages.

5.2.4 Entry Barriers for Young and Novice Learners. Another
design gap is that current AI learning tools are rarely intended for
young children, which may stem from perceived requisites for
technology-based AI learning, such as foundational math knowl-
edge [33] and the ability to use technical devices [88]. However,
children as young as 4 to 6 could grasp fundamental AI concepts,
like the basic workflow of supervised learning [123]. As such, we
see an opportunity for research and design initiatives to explore
and broaden the potential for AI learning among young chil-
dren, to inform the creation of age-appropriate AI interventions
and help young people establish AI literacy from an early age. Addi-
tionally, when designing new tools for young children, we suggest
that designers consider target learners’ prior coding skills. This
recommendation emerges from our findings that over half of the ex-
amined tools require some level of expertise in block-based coding
(50%) or text-based coding (11.1%), with only a few providing com-
panion coding instructions [112, 139]. While coding can cultivate a
mindset aligned with AI’s systemic and analytical characteristics,
it is not essential for understanding AI concepts and may pose ad-
ditional challenges for young learners and novices [59]. Future AI
learning tools can make coding an optional component of learning
experiences or include preliminary tutorials before coding tasks
to lower these entry barriers and enhance the inclusivity of AI
education.

5.2.5 Insufficient Research on Children’s AI Learning from
a Design Perspective. Finally, we observe a significant gap in re-
search on children’s AI learning tools through a design lens: the lack
of dedicated studies investigating design features that causally en-
hance students’ AI learning outcomes. Using the theoretical frame-
work of the “four pillars of learning” [41], we identified four clusters
of design features that are likely to enhance the effectiveness of
AI learning activities by aligning with children’s effective learning
patterns. However, despite their theoretical promise, these features
have not been rigorously validated for their causal impacts on
children’s AI learning outcomes. We thus urge further research
employing robust empirical evaluation methods to examine the
causal relationships between the identified design features
and children’s AI learning outcomes—insights that are essential
for guiding the development of more effective tools in the future.

5.3 Limitations
The current study has several limitations. First, our analysis focused
on AI learning tools referenced in research papers or by academic
communities within AI-related fields. Our findings, therefore, may
not exhaustively represent the entire design scope. Second, since
over half of the examined tools are not publicly accessible, our anal-
ysis relied on descriptions from authors and developers rather than
direct experience, which may cause an incomplete grasp of their de-
sign features. Third, while we summarized the assessment methods
of the included tools, we did not examine their effectiveness due
to the lack of standardized assessments, insufficient empirical evi-
dence, and variability of effectiveness across learners and contexts.
Fourth, our chosen analytical design framework is not the only
available option, which may constrain the scope of the findings we
can offer. Lastly, we concentrated on tools for children’s learning of
AI and did not address those for non-STEM subjects. Nonetheless,
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exploring learning tools in non-STEM fields is a promising future
research direction.

6 Conclusion
This paper examines the design of existing technologies to sup-
port children’s AI learning. By conducting a systematic search and
analysis of these tools’ design features across three key dimen-
sions, we identify current trends and gaps in AI learning tools for
young learners, along with opportunities and recommendations for
designing more effective AI learning tools in the future. We aim
for these insights to serve as a robust foundation for research and
design practices, consequently enhancing AI education for future
generations.
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Appendices

Table 3: List of Examined Children’s AI Learning Tools. “Y” indicates tools that are publicly accessible. “N” indicates those that
are not. “-” means the information not provided by the tool developers.

Presentation
Format

Name Learning
Content

Learning
Activity

Target Age Group Public
Availability

Source

Adventure
Alongside AI

AI awareness
AI mechanics

Experiencing Kindergarten Primary school
(lower grades) Middle school

N [102]

AI Made By
You

AI awareness
AI mechanics

Creating Middle school N [109]

AI World AI awareness
AI mechanics

Conventional
instruction

Primary school (lower grades
upper grades)

N [136]

AI-1: Who Is
That Ocelot?

AI awareness
AI mechanics

Creating Primary school (lower grades
upper grades)

Y [29]

AI-2: Mapping
Terrain

AI awareness
AI mechanics

Creating Primary school (lower grades
upper grades)

Y [25]

AI-3:
Sustainable
Farming

AI awareness
AI mechanics

Creating Primary school (lower grades
upper grades)

Y [26]

AI-4: Ocean
Observations

AI awareness
AI mechanics

Creating Primary school (lower grades
upper grades)

Y [27]

AI-5: Water
quality

AI awareness
AI mechanics

Creating Primary school (lower grades
upper grades) Middle school High

school

Y [30]

ArtBot AI awareness
AI mechanics
AI impacts

Modifying Primary school (lower grades
upper grades) Middle school High

school

Y [117, 131, 132]

BlockWiSARD AI awareness
AI mechanics

Creating Primary school (lower grades
upper grades)

Y [90]

Virtual tools ChemAIstry AI mechanics Modifying Primary school (lower grades
upper grades) Middle school

Y [67]

Co-ML AI mechanics
AI impacts

Creating Primary school (upper grades)
Middle school High school

N [111, 112]

Cognimates AI awareness
AI mechanics

Creating Primary school (lower grades
upper grades) Middle school

Y [22, 23]

CONVO AI awareness
AI mechanics

Creating Primary school (upper grades)
Middle school

N [138]

DeepScratch AI mechanics Creating Primary school (lower grades
upper grades) Middle school High

school

Y [7]

Digits
Interpolation
Notebook

AI mechanics Modifying Middle school High school Y [61]

DoodleIt AI mechanics Experiencing Middle school Y [64, 98]
Hour of Code:
AI for Good

AI awareness
AI mechanics

Modifying – Y [31]

Hour of Code:
Generation AI

AI awareness
AI mechanics
AI impacts

Modifying Primary school (lower grades
upper grades) Middle school High

school

Y [28]

LearningML AI awareness
AI mechanics

Creating Primary school (upper grades)
Middle school

Y [95–97]

Let’s Chance AI awareness
AI mechanics

Creating Middle school High school N [21]

Machine
Learning for

Kids

AI awareness
AI mechanics

Creating – Y [55]

ML-Quest AI mechanics Experiencing High school Y [89]
Mo AI awareness

AI mechanics
Conventional
instruction

Primary school (upper grades)
Middle school High school

Y [124]
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Presentation
Format

Name Learning
Content

Learning
Activity

Target Age Group Public
Availability

Source

Neural
Network

Playground

AI mechanics Modifying Primary school (upper grades)
Middle school

Y [79]

NLP4All AI mechanics Modifying High school N [44]
NLP4Science AI mechanics Experiencing Primary school (upper grades)

Middle school
N [53]

PoseBlocks AI awareness
AI mechanics

Creating Primary school (upper grades)
Middle school

Y [47]

PRIMARYAI AI awareness
AI mechanics
AI impacts

Creating Primary school (lower grades
upper grades)

N [82, 83]

Q-learning
Playground

AI mechanics Modifying Primary school (upper grades)
Middle school

Y [79]

Scratch-NB AI mechanics Creating Middle school N [91]
Shadow

Matching Game
AI mechanics Experiencing Middle school High school Y [61]

SmileyCluster AI mechanics Modifying High school N [119]
Teachable
Machine

AI awareness
AI mechanics

Creating – Y [16, 62]

Tooee AI awareness
AI mechanics

Creating Primary school (lower grades
upper grades)

N [84]

ViPER AI awareness
AI mechanics

Creating Middle school N [85]

VotestratesML AI awareness
AI mechanics

Creating High school N [51]

Virtual tools Zhorai AI awareness
AI mechanics
AI impacts

Experiencing Primary school (lower grades
upper grades)

Y [57]

– AI awareness
AI mechanics

Experiencing Primary school (upper grades)
Middle school High school

N [4]

– AI awareness
AI mechanics

Modifying High school N [18]

– AI awareness
AI mechanics

Creating Primary school (lower grades
upper grades) Middle school High

school

Y [24, 48, 49]

– AI mechanics Creating High school Y [65, 110]
– AI mechanics

AI impacts
Modifying Primary school (upper grades)

Middle school
Y [72]

– AI awareness
AI mechanics

Conventional
instruction

High school N [94]

– AI awareness
AI mechanics

Creating Primary school (upper grades)
Middle school High school

Y [15]

– AI mechanics Modifying High school N [115]
– AI mechanics

AI impacts
Conventional
instruction

Primary school (upper grades)
Middle school

N [134]

– AI awareness
AI mechanics

Creating – N [135]

AIThaiGen AI awareness
AI mechanics

Creating Middle school Y [9]

AlpacaML AI awareness
AI mechanics

Creating Primary school (lower grades
upper grades) Middle school High

school

Y [139–141]

Hybrid tools Doodlebot AI awareness
AI mechanics
AI impacts

Creating Primary school (lower grades
upper grades) Middle school

N [121]

Gest AI mechanics Creating Primary school (upper grades)
Middle school

N [43]

Jibo AI awareness
AI mechanics

Experiencing Primary school (lower grades
upper grades)

N [5]
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Presentation
Format

Name Learning
Content

Learning
Activity

Target Age Group Public
Availability

Source

KAI AI mechanics Creating Primary school (upper grades)
Middle school High school

Y [108]

Machine
Learning
Machine

AI mechanics
AI impacts

Creating Middle school High school N [12, 52]

ML-Machine AI awareness
AI mechanics

Creating Middle school Y [14]

PlushPal AI awareness
AI mechanics

Creating Primary school (lower grades
upper grades) Middle school

Y [113]

Hybrid tools PopBots AI awareness
AI mechanics

Modifying Kindergarten Primary school
(lower grades)

N [5, 120, 122, 123]

Solving
Problems of
Tomorrow

AI awareness
AI mechanics
AI impacts

Creating Primary school (lower grades
upper grades) Middle school

N [1]

Scratch Nodes
ML

AI awareness
AI mechanics

Creating Primary school (upper grades)
Middle school

N [2, 42]

– AI awareness
AI mechanics

Creating High school N [39]

– AI mechanics Experiencing – N [45]
– AI awareness

AI mechanics
Creating – N [75]

– AI awareness
AI mechanics

Experiencing High school N [103]
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